当前位置: 首页 > >

龙驭球

龙驭球,1926年1月15日生,湖南省安化县人,土木工程和结构力学专家,中国工程院资深院士,中国共产党党员,清华大学教授、博士生导师  。

1944年龙驭球考入交通大学贵州分校;1945年转学至西南联合大学;1948年从清华大学毕业后留校任教,先后担任清华大学土木工程系助理研究员、助教、讲师、教授;1990年至2000年担任《工程力学报》主编;1995年当选为中国工程院院士;1999年担任结构工程国际学术会议主席  。

龙驭球从事结构力学、有限元法、能量原理、壳体结构的教学科研工作。在有限元与变分原理方面,取得多项成果,包括:分区和分项能量原理,分区混合有限元,样条有限元,含可选参数变分原理,广义协调元,四边形面积坐标理论,厚板层合板无闭锁理性元和解析试函数有限元。在壳体计算理论方面,创立柱壳和折板的力法,薄壳应力集中的摄动法和新型薄壳有限元。1963年研究潜艇薄壳发射孔应力集中问题,创立薄壳大孔口分析方法  。

1944年9月至1945年7月,在唐山交通大学(今西南交通大学)土木工程系就读一年级。

1945年9月至1946年7月,在西南联合大学土木工程系就读二年级。

1946年9月至1948年7月,在清华大学土木工程系就读三、四年级,并毕业。

1948年9月至1949年7月,在清华大学土木工程系就读研究生,并兼助理研究员。

1948年9月至1949年8月,担任清华大学土木工程系助理研究员。

1949年9月至1952年8月,担任清华大学土木工程系助教。

1952年9月至1978年5月,担任清华大学土木工程系讲师  。

中国文化大革命期间,龙驭球从江西鲤鱼洲农场返校后,加入了为工农兵学员授课办学的行列,在此期间接触到有限元法  。

1978年6月起,担任清华大学土木工程系教授。

1978年,编写的《有限元法概论》一书出版。

1995年5月,当选为中国工程院院士  。

研究成果

龙驭球和他的团队选定有限元学科领域一系列悬而未决的历史难题作为“目标”,寻求突破与创新。龙驭球在学术领域和科研工作中,长于解剖问题,化整为零,化难为易,综合创新,形成自己独特方法。他的专业研究方向为有限元法、能量原理和壳体结构分析。首先,创立116个新元和5类新元系列,包括:广义协调元(54个)、分区混合元(9个)、自然坐标元(24个)、解析试函数元(11个)、样条元(18个)。其次,创立分区能量原理和可选参数能量原理。第三,创立4个壳体新算法并参加制订《薄壳结构设计规程》  。

有限元与变分原理方面

龙驭球在有限元与变分原理方面,取得多项中国国内外首创成果,包括:分区和分项能量原理(1980),分区混合有限元 (1982),样条有限元(1984),含可选参数变分原理(1986),广义协调元(1987,辛克贵),四边形面积坐标理论(1997),厚板层合板无闭锁理性元(1998)和解析试函数有限元(2002)。

壳体计算理论方面

龙驭球在壳体计算理论方面,创立柱壳和折板的力法(1962),薄壳应力集中的摄动法(1965)和新型薄壳有限元(1993)。在工程应用方面取得显著成效:科研成果被编入建设部“薄壳设计规程”,对全国壳体工程的设计和建造起指导作用;1963年研究潜艇薄壳发射孔应力集中问题,创立薄壳大孔口分析方法  。

2004年,针对美国MSC软件公司创始人麦克尼尔1985年提出一个关于网格畸变的难题(即“麦克尼尔细长梁问题”)——很多著名单元都对网格畸变敏感,在梯形畸变网格中精度很低。龙驭球团队基于四边形面积坐标提出了广义协调元AGQ6,破解了该难题  。

由龙驭球带领创立的许多新型有限元模型已经被中国国内主流结构设计软件采纳,并被证明优于中国国外同类软件中的同类模型,有力支撑了中国国产结构设计CAD软件的发展  。

科研获奖

时间

奖项名称

奖项

项目

2002年

高等学校优秀教材奖

一等奖

《结构力学教程》

2002年

教育部提名国家科学技术奖

一等奖

广义协调理论与四边形面积坐标新型有限元研究

2001年

高等教育国家级教学成果奖

一等奖

结构力学课程新体系的建设与实践

2000年

光华工程科技奖

壳体研究

1994年

国家科学技术进步奖

二等奖

《结构力学》

1992年

国家教委科学技术奖

一等奖

广义能量原理与新型有限元研究 

出版著作

截至2018年8月,龙驭球出版著作21部,发表学术论文235篇  。参加制定建设部1998年颁发施行的《钢筋混凝土薄壳结构设计规程》。代表性著作有《结构力学》《变分原理·有限元·壳体分析》《能量原理基础与进展》《结构力学》《结构力学教程》《壳体结构概论》和《新型有限元论》。

作为长期从事新型有限元方法研究的中国学者,龙驭球和他的团队经过多年努力,将研究成果汇集成《新型有限元论》,并于2004年正式出版。2009年,应德国斯普林格出版社和清华大学出版社联合邀请,《新型有限元论》的英文版《Advanced Finite Element Methods in Structural Engineering》也正式出版。这套介绍中国学者原创成果的有限元中英文专著是龙驭球团队研究的结晶。其英文电子版在斯普林格网站公开发布后两年半内,已经被国际同行下载高达7409次  。

论文发表

卜小明, 龙驭球. 一种薄板弯曲问题的四边形位移单元[J]. 力学学报, 1991, 23(1):53-60.

须寅, 龙驭球. 采用广义协调条件构造具有旋转自由度的四边形膜元[J]. 工程力学, 1993(3):27-36.

龙驭球, 傅向荣. 基于解析试函数的广义协调四边形厚板元[J]. 工程力学, 2002, 19(3):10-15.

岑松, 龙驭球. 采用面积坐标的四边形厚薄板通用单元[J]. 工程力学, 1999, 16(2):1-15.

岑松, 姚振汉, 龙驭球. 基于一阶剪切变形理论的新型复合材料层合板单元[J]. 工程力学, 2002, 19(1).

罗建辉, 岑松, 龙志飞, 厚板哈密顿求解体系及其变分原理与正交关系[J]. 工程力学, 2004, 21(2).

陈晓明, 岑松, 龙驭球. 采用面积坐标和基于假设转角的薄板元[J]. 工程力学, 2005(4):1-5.

龙驭球, 傅向荣. 基于解析试函数的广义协调元[C].全国结构工程学术会议. 2002.

龙驭球. 不倦翻新写教材[J]. 教材通讯, 1988(3):3-4.

龙驭球, 崔京浩, 袁驷. 力学筑梦中国[J]. 工程力学, 2018, 35(1):1-54.

龙驭球. 祝贺《工程力学》创刊三十周年[J]. 工程力学, 2014, 31(10):3-3.

龙驭球, 支秉琛, 匡文起.分区混合有限元法计算应力强度因子[J]. 力学学报, 1982, 18(4).

龙驭球, 李聚轩, 龙志飞. 四边形单元面积坐标理论[J]. 工程力学, 1997, 14(3):1-11.

龙驭球, 黄民丰. 广义协调等参元[J]. 应用数学和力学, 1988, 9(10):871-877.

傅向荣, 龙驭球. 解析试函数法分析平面切口问题[J]. 工程力学, 2003, 20(4).

龙志飞, 李聚轩. 四边形单元面积坐标的微分和积分公式[J]. 工程力学, 1997(3):12-20.

卜小明, 龙驭球. 一种高精度的矩形板弯曲单元[J]. 土木工程学报, 1991(1):17-22.

李聚轩, 龙驭球. 广义协调元方法的收敛性[J]. 工程力学, 1996(1):75-80.

龙驭球, 须寅. 广义协调平板型矩形壳元[J]. 计算结构力学及其应用, 1994, 11(2):154-160.

张春生, 龙驭球, 须寅. 三维内参型附加非协调位移基本项[J]. 工程力学, 2001, 18(5):50-63.

龙驭球, 赵俊卿. 薄板弯曲问题的广义协调三角形元[J]. 计算力学学报, 1989, 6(1):122-133.

龙驭球. 含多个任意参数的广义变分原理及换元乘子法[J]. 应用数学和力学, 1987, 8(7):591-602.

傅向荣, 龙驭球. 分区混合元法分析平面裂纹问题[J]. 工程力学, 2001, 18(6):39-46.

龙驭球, 须寅. 广义协调平板型三角形壳元[J]. 工程力学, 1993, 10(4):1-8.

赵毅强, 龙驭球. 分区混合有限元法求混合型应力强度因子[J]. 计算力学学报, 1984(1):52-60.

龙驭球, 赵俊卿. 厚板薄板通用的广义协调矩形元[J]. 工程力学, 1988(1).

龙驭球, 陈晓明. 两个抗畸变的四边形膜元[J]. 清华大学学报(自然科学版), 2003, 43(10).

龙驭球. 弹性厚板的分区广义变分原理[J]. 应用数学和力学, 1983, 4(2):165-172.

龙驭球, 须寅. 构造几何不敏感四边形膜元的广义协调方法[J]. 力学学报, 1997, 29(6).

龙驭球, 辛克贵. 多边形截面框筒结构的能量解法[J]. 建筑结构学报, 1985, 6(03):10-16.

龙驭球, 赵俊卿, Yuqiu L . 扁壳广义协调曲面矩形元[J]. 工程力学, 1992, 9(1):3-10.

龙驭球, Yuchiu L . SUEREGION GENERALIZED VARIATIONAL PRINCIPLES FOR ELASTIC THICK PLATES[J]. 应用数学和力学, 1983, 4(2):175-184.

龙驭球, 卜小明. 一类有效的板弯曲单元[J]. 清华大学学报(自然科学版), 1990(5):9-14.

龙驭球, 钱俊. 表面裂纹的分区混合元分析[J]. 航空学报, 1992, 13(7):358-364.

龙驭球, 张铜生. 椭圆抛物面扁壳某些应力集中问题[J]. 清华大学学报(自然科学版), 1964, 8(3):61-79.

龙驭球, 赵俊卿. 能量法和加权残值法的联合应用——构造有限元的新途径[J]. 航空学报, 1990, 11(5).

龙驭球, 陈晓明, 岑松. 一个不闭锁和抗畸变的四边形厚板元[J]. 计算力学学报, 2005, 22(4):385-391.

龙驭球, 龙志飞, 王丽. 四边形单元第三类面积坐标系统[J]. 工程力学, 2009, 26(2):0-004.

龙驭球, 支秉琛, 袁驷. 极坐标有限条法解扁球壳问题[J]. 计算力学学报, 1985, 2(2):15-20.

龙驭球, 赵俊卿. 厚板低阶广义协调矩形元[J]. 清华大学学报(自然科学版), 1993(2):7-16.

龙驭球. 结构矩阵分析中的“平衡-几何”互伴定理[J]. 工程力学, 2012, 29(5):1-7.

龙驭球, 张良铎. 苏联结构设计方法的新发展[J]. 科学通报, 1953(5):57-66.

龙驭球. 壳体有限元述评[C].全国结构工程学术会议. 1994.

龙驭球. 结构分析方法论[C].庆贺刘锡良教授执教五十周年暨全国现代结构工程学术报告会. 2001.

龙驭球. 加减问用与创新[J]. 中学生数理化:初中版, 2003(27):1-1.

龙驭球. 热烈祝贺《工程力学》创刊20周年题词[J]. 工程力学, 2004, 21(5):6.

龙驭球. 加 减 问 用 创[J]. 少儿科技, 2004(6):8-8.

龙驭球, 陈晓明, 岑松. 一个不闭锁和抗畸变的四边形厚板元[J]. 计算力学学报, 2005, 22(4).

龙驭球. 书讯——《新型有限元论》出版[J]. 工程力学, 2005, 22(3):0-0.

龙驭球. 学习中的加减问用与创新[J]. 中学生数理化(八年级物理)(配合人教社教材), 2008(11)  .

龙驭球在教学中教书育人,期望学生超过自己,1981年至2016年,龙驭球在新型有限元方法研究领域共培养出10位硕士、14位博士,形成了一脉相承的研究团队  。其中有:

崔京浩,1964年博士毕业,清华大学土木工程系教授,博士生导师;

辛克贵,1983年博士毕业,清华大学土木工程系教授,博士生导师;

袁驷,1984年博士毕业,清华大学土木工程系教授,博士生导师;

范重,1988年博士毕业,中国建筑科学研究院教授级高工;

岑松,2000年博士毕业,清华大学航天航空学院教授,博士生导师;

李聚轩,1996年博士毕业,教授。

中国工程院院士 

龙驭球曾任教育部工科力学指导委员会主任委员,中国力学学会《工程力学》学报主编,中国土木工程学会第四届理事,1999年结构工程国际会议主席,全国结构工程学术会议(第1至14届)  。担任国际学术期刊《International Journal of Structural Stability and Dynamics》和《Advances in Structural Engineering》编委  。

龙驭球长期从事结构力学、有限元法、能量原理、壳体结构的教学和科研工作。在分区和分项能量原理、分区混合有限元、四边形面积坐标理论、厚板层合板无闭锁理性元和解析试函数有限元等方面,取得多项中国国内外首创成果,在工程应用方面取得显著成效  。(中国工程院院士馆评

他(龙驭球)谦虚谨慎,平易近人,为中国工程科技界树立了榜样  。(中国工程院院长徐匡迪评

龙驭球院士八十华诞

2006年1月15日上午,清华大学土木工程系在近春园为龙驭球院士庆祝八十华诞。清华大学土水学院院长袁驷首先代表土水学院致贺辞;校党委常务副书记庄丽君代表学校表达了对龙先生的生日祝贺,并转赠了校长顾秉林、党委书记陈希签名的生日贺卡;陈肇元院士宣读了全国政协副主席、中国工程院院长徐匡迪的贺信;袁明武老师代表中国力学学会计算力学专业委员会致贺辞;龙驭球的亲朋好友代表黄克智院士、3位老同学、同事也表达了祝福之情  。



友情链接: bgkz 土豆网名 开心小聚 疯狂踏板网 八仙饭店 女王芦荟 高粱标志 王牌游戏 苹果狂魔网 落伍果盘